Senin, 21 Februari 2011

Teori Orsted



Hubungan antara listrik dan magnetik pertama kali diselidiki oleh Hans Christian Orsted yang melakukan percobaan sebagai berikut ditunjukkan oleh gambar:
Dalam teori orsted sebagaimana ditunjukkan oleh gambar diagram percobaan diatas, bila arus dalam penghantar mengalir menurut arah Selatan (S) ke Utara (U), maka kutub magnet jarum yang berada dibawah kawat akan berputar ke kiri atau kutub utara magnet jarum yang berada diatas kawat akan berputar ke kanan.
Dari percobaan ini dapat diketahui:
  1. Pada penghantar yang arah arus listriknya mengalir menurut arah selatan ke utara, jika magnet jarum diletakkan dibawah kawat maka kutub utara magnet jarum tersebut akan berputar ke kiri
  2. Pada penghantar yang arah arus listriknya mengalir menurut arah selatan ke utara, jika magnet jarum diletakkan diatas kawat maka kutub utara magnet jarum tersebut akan berputar ke kanan
Efek ini akan berlaku kebalikan jika arah arus listrik pada penghantar mengalir menurut arah Utara ke Selatan. Percobaan Orsted ini mengawali penelitian lanjutan mengenai bentuk medan magnet yang dihasilkan oleh energi listrik, yang kemudian segera dilanjutkan oleh Jean Baptiste Biot dan Felix Savart untuk kemudian dikenal dengan  hukum Biot-Savart.
Orsted tidak pernah memberikan penjelasan matematis mengenai alasan fenomena ini.

PENGANTAR SINGKAT


Teknik elektro adalah bidang disiplin ilmu yang sangat luas dan memiliki tingkat perkembangan yang paling cepat pada beberapa dekade ini jika dibandingkan dengan disiplin ilmu lainnya. Hal ini disebabkan karena semakin tingginya jumlah permintaan pasar terhadap hasil-hasil pengembangan teknologi elektro yang berdampak pada semakin ditingkatkannya berbagai penelitian-penelitian dibidang elektro serta didukung pula oleh pertumbuhan industri elektro dan kebutuhannya dalam beberapa dekade ini.
Hans Christian Orsted
Pengembangan ilmu pengetahuan tentang elektro dimulai sejak ditemukannya hubungan antara medan magnet dengan energi listrik oleh Hans Christian Orsted pada 1820 bahwa kawat yang dialiri arus listrik dapat menolak jarum magnet kompas. Namun, Orsted tidak menawarkan penjelasan yang memuaskan untuk fenomena ini. Ia pun tidak mencoba menghadirkan fenomena tersebut dalam kerangka matematis.
Sebulan setelah temuan Orsted ini menyebar di Paris, dua orang ilmuwan Prancis Jean Baptiste  Biot dan Felix Savart berhasil menentukan bentuk medan magnet yang ditimbulkan oleh arus listrik yang stabil. Percobaan tersebut kemudian dikenal dengan hukum Biot-Savart.
Michael Faraday Bapak Penemu Listrik
Penemuan dibidang elektromagnetik tersebut kemudian berlanjut pada penelitian Michael Faraday yang menemukan gaya gerak listrik (GGL) berdasarkan dari penelitiannya tentang efek perubahan medan magnet di dalam kumparan yang menyebabkan munculnya beda potensial pada kedua ujung kumparan. Michael Faraday menemukan efek induksi magnet ini pada tahun 1831. Meskipun penemuannya hampir bersamaan dengan penemuan Joseph Henry, namun banyak dari para ilmuwan dan pelajar dibidang elektro mengakui Michael Faraday sebagai Bapak Penemu Listrik.
Pada dasarnya, Michael Faraday telah menemukan teknik pembangkitan energi listrik dan motor listrik pertama melalui hasil percobaanya tersebut. Pada percobaannya tersebut ia menggunakan sebatang magnet yang digerakkan keluar masuk melalui kumparan sehingga menghasilkan beda potensial listrik di ujung-ujung kumparannya. Hal yang menjadi dasar dikembangkannya pembangkitan energi listrik, pembuatan motor listrik dan lain sebagainya yang hingga hari ini menjadi dasar perkembangan disiplin ilmu dan teknologi ini. Penemuannya ini kemudian dikenal sebagai Hukum Induksi Faraday. Michael Faraday juga dikenal sebagai penemu kapasitor. Satuan kapasitansi kapasitor diberi nama dengan menggunakan namanya: Farad.
Thomas Alfa Edison penemu dan pemilik 1093 paten peralatan elektronika
Wajah dunia hari ini tidak akan pernah seperti yang terlihat hari ini tanpa penemuan besar berbagai perangkat yang memanfaatkan energi listrik. Thomas Alfa Edison adalah salah satu ilmuwan yang banyak memanfaatkan energi listrik untuk digunakan dalam kehidupan sehari-hari. Berkat penemuannya Bola Lampu Listrik pada tahun 1879 yang digunakan sebagai penerangan pertama kali di Kota Newyork, sejak saat itulah wajah dunia berubah. Perkembangan dunia elektro semakin luas dan hingga kini dibagi menjadi beberapa cabang ilmu.
Tutorial lengkap tentang dasar-dasar ilmu Teknik Elektro ditulis didalam sub-halaman ini.

pengertian Generator DC

Generator DC merupakan sebuah perangkat mesin listrik dinamis yang mengubah energi mekanis menjadi energi listrik. Generator DC menghasilkan arus DC / arus searah. Generator DC dibedakan menjadi beberapa jenis berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker), jenis generator DC yaitu:
1. Generator penguat terpisah
2. Generator shunt
3. Generator kompon
1. Konstruksi Generator DC
Pada umumnya generator DC dibuat dengan menggunakan magnet permanent dengan 4-kutub rotor, regulator tegangan digital, proteksi terhadap beban lebih, starter eksitasi, penyearah, bearing dan rumah generator atau casis, serta bagian rotor. Gambar 1 menunjukkan gambar potongan melintang konstruksi generator DC

Gambar 1. Konstruksi Generator DC
Generator DC terdiri dua bagian, yaitu stator, yaitu bagian mesin DC yang diam, dan bagian rotor, yaitu bagian mesin DC yang berputar. Bagian stator terdiri dari: rangka motor, belitan stator, sikat arang, bearing dan terminal box. Sedangkan bagian rotor terdiri dari: komutator, belitan rotor, kipas rotor dan poros rotor.
Bagian yang harus menjadi perhatian untuk perawatan secara rutin adalah sikat arang yang akan memendek dan harus diganti secara periodic / berkala. Komutator harus dibersihkan dari kotoran sisa sikat arang yang menempel dan serbuk arang yang mengisi celah-celah komutator, gunakan amplas halus untuk membersihkan noda bekas sikat arang
2. Prinsip kerja Generator DC
Pembangkitan tegangan induksi oleh sebuah generator diperoleh melalui dua cara:
  • Dengan menggunakan cincin-seret, menghasilkan tegangan induksi bolak-balik.
  • Dengan menggunakan komutator, menghasilkan tegangan DC.
Proses pembangkitan tegangan tegangan induksi tersebut dapat dilihat pada Gambar 2 dan Gambar 3

Gambar 2. Pembangkitan Tegangan Induksi.
Jika rotor diputar dalam pengaruh medan magnet, maka akan terjadi perpotongan medan magnet oleh lilitan kawat pada rotor. Hal ini akan menimbulkan tegangan induksi. Tegangan induksi terbesar terjadi saat rotor menempati posisi seperti Gambar 2 (a) dan (c). Pada posisi ini terjadi perpotongan medan magnet secara maksimum oleh penghantar. Sedangkan posisi jangkar pada Gambar 2.(b), akan menghasilkan tegangan induksi nol. Hal ini karena tidak adanya perpotongan medan magnet dengan penghantar pada jangkar atau rotor. Daerah medan ini disebut daerah netral.

Gambar 3. Tegangan Rotor yang dihasilkan melalui cincin-seret dan komutator.
Jika ujung belitan rotor dihubungkan dengan slip-ring berupa dua cincin (disebut juga dengan cincin seret), seperti ditunjukkan Gambar 3.(1), maka dihasilkan listrik AC (arus bolak-balik) berbentuk sinusoidal. Bila ujung belitan rotor dihubungkan dengan komutator satu cincin Gambar 3.(2) dengan dua belahan, maka dihasilkan listrik DC dengan dua gelombang positip.
  • Rotor dari generator DC akan menghasilkan tegangan induksi bolak-balik. Sebuah komutator berfungsi sebagai penyearah tegangan AC.
  • Besarnya tegangan yang dihasilkan oleh sebuah generator DC, sebanding dengan banyaknya putaran dan besarnya arus eksitasi (arus penguat medan)
3. Jangkar Generator DC
Jangkar adalah tempat lilitan pada rotor yang berbentuk silinder beralur. Belitan tersebut merupakan tempat terbentuknya tegangan induksi. Pada umumnya jangkar terbuat dari bahan yang kuat mempunyai sifat feromagnetik dengan permiabilitas yang cukup besar.
Permiabilitas yang besar diperlukan agar lilitan jangkar terletak pada derah yang induksi magnetnya besar, sehingga tegangan induksi yang ditimbulkan juga besar. Belitan jangkar terdiri dari beberapa kumparan yang dipasang di dalam alur jangkar. Tiap-tiap kumparan terdiri dari lilitan kawat atau lilitan batang

Gambar 4. Jangkar Generator DC
4. Reaksi Jangkar
Fluks magnet yang ditimbulkan oleh kutub-kutub utama dari sebuah generator saat tanpa beban disebut Fluks Medan Utama (Gambar 5). Fluks ini memotong lilitan jangkar sehingga timbul tegangan induksi.

Gambar 5. Medan Eksitasi Generator DC
Bila generator dibebani maka pada penghantar jangkar timbul arus jangkar. Arus jangkar ini menyebabkan timbulnya fluks pada penghantar jangkar tersebut dan biasa disebut FIuks Medan Jangkar (Gambar 6)

Gambar 6. Medan Jangkar dari Generator DC (a) dan Reaksi Jangkar (b).
Munculnya medan jangkar akan memperlemah medan utama yang terletak disebelah kiri kutub utara, dan akan memperkuat medan utama yang terletak di sebelah kanan kutub utara. Pengaruh adanya interaksi antara medan utama dan medan jangkar ini disebut reaksi jangkar. Reaksi jangkar ini mengakibatkan medan utama tidak tegak lurus pada garis netral n, tetapi bergeser sebesar sudut α. Dengan kata lain, garis netral akan bergeser. Pergeseran garis netral akan melemahkan tegangan nominal generator.
Untuk mengembalikan garis netral ke posisi awal, dipasangkan medan magnet bantu (interpole atau kutub bantu), seperti ditunjukkan pada Gambar 7.(a).

Gambar 7. Generator dengan Kutub Bantu (a) dan Generator Kutub Utama, Kutub Bantu, Belitan Kompensasi (b).
Lilitan magnet bantu berupa kutub magnet yang ukuran fisiknya lebih kecil dari kutub utama. Dengan bergesernya garis netral, maka sikat yang diletakkan pada permukaan komutator dan tepat terletak pada garis netral n juga akan bergeser. Jika sikat dipertahankan pada posisi semula (garis netral), maka akan timbul percikan bunga api, dan ini sangat berpotensi menimbulkan kebakaran atau bahaya lainnya. Oleh karena itu, sikat juga harus digeser sesuai dengan pergeseran garis netral. Bila sikat tidak digeser maka komutasi akan jelek, sebab sikat terhubung dengan penghantar yang mengandung tegangan. Reaksi jangkar ini dapat juga diatasi dengan kompensasi yang dipasangkan pada kaki kutub utama baik pada lilitan kutub utara maupun kutub selatan, seperti ditunjukkan pada gambar 7 (a) dan (b), generator dengan komutator dan lilitan kompensasinya.
Kini dalam rangkaian generator DC memiliki tiga lilitan magnet, yaitu:
• lilitan magnet utama
• lilitan magnet bantu (interpole)
• lilitan magnet kompensasi
5. Jenis-Jenis Generator DC
Seperti telah disebutkan diawal, bahwa generator DC berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker) dibagi menjadi 3 jenis, yaitu:
1. Generator penguat terpisah
2. Generator shunt
3. Generator kompon
• Generator Penguat Terpisah
Pada generator penguat terpisah, belitan eksitasi (penguat eksitasi) tidak terhubung menjadi satu dengan rotor. Terdapat dua jenis generator penguat terpisah, yaitu:
1. Penguat elektromagnetik (Gambar 8.a)
2. Magnet permanent / magnet tetap (Gambar 8.b)

Gambar 8. Generator Penguat Terpisah.
Energi listrik yang dihasilkan oleh penguat elektromagnet dapat diatur melalui pengaturan tegangan eksitasi. Pengaturan dapat dilakukan secara elektronik atau magnetik. Generator ini bekerja dengan catu daya DC dari luar yang dimasukkan melalui belitan F1-F2.
Penguat dengan magnet permanen menghasilkan tegangan output generator yang konstan dari terminal rotor A1-A2. Karakteristik tegangan V relatif konstan dan tegangan akan menurun sedikit ketika arus beban I dinaikkan mendekati harga nominalnya.
Karakteristik Generator Penguat Terpisah

Gambar 9. Karakteristik Generator Penguat Terpisah
Gambar 9 menunjukkan:
a. karakteristik generator penguat terpisah saat eksitasi penuh (Ie 100%) dan saat eksitasi setengah penuh (Ie 50%). Ie adalah arus eksitasi, I adalah arus beban.Tegangan output generator akan sedikit turun jika arus beban semakin besar.
b. Kerugian tegangan akibat reaksi jangkar.
c. Perurunan tegangan akibat resistansi jangkar dan reaksi jangkar, selanjutnya mengakibatkan turunnya pasokan arus penguat ke medan magnet, sehingga tegangan induksi menjadi kecil.
• Generator Shunt
Pada generator shunt, penguat eksitasi E1-E2 terhubung paralel dengan rotor (A1-A2). Tegangan awal generator diperoleh dari magnet sisa yang terdapat pada medan magnet
stator. Rotor berputar dalam medan magnet yang lemah, dihasilkan tegangan yang akan memperkuat medan magnet stator, sampai dicapai tegangan nominalnya. Pengaturan arus eksitasi yang melewati belitan shunt E1-E2 diatur oleh tahanan geser. Makin besar arus eksitasi shunt, makin besar medan penguat shunt yang dihasilkan, dan tegangan terminal meningkat sampai mencapai tegangan nominalnya. Diagram rangkaian generator shunt dapat dilihat pada Gambar 10.

Gambar 10. Diagram Rangkaian Generator Shunt
Jika generator shunt tidak mendapatkan arus eksitasi, maka sisa megnetisasi tidak akan ada, atau jika belitan eksitasi salah sambung atau jika arah putaran terbalik, atau rotor terhubung-singkat, maka tidak akan ada tegangan atau energi listrik yang dihasilkan oleh generator tersebut.
Karakteristik Generator Shunt

Gambar 11. Karakteristik Generator Shunt.
Generator shunt mempunyai karakteristik seperti ditunjukkan pada Gambar 11. Tegangan output akan turun lebih banyak untuk kenaikan arus beban yang sama, dibandingkan dengan tegangan output pada generator penguat terpisah.
Sebagai sumber tegangan, karakteristik dari generator penguat terpisah dan generator shunt tentu kurang baik, karena seharusnya sebuah generator mempunyai tegangan output yang konstan, namun hal ini dapat diperbaiki pada generator kompon.
• Generator Kompon
Generator kompon mempunyai dua penguat eksitasi pada inti kutub utama yang sama. Satu penguat eksitasi merupakan penguat shunt, dan lainnya merupakan penguat seri. Diagram rangkaian generator kompon ditunjukkan pada Gambar 12. Pengatur medan magnet (D1-D2) terletak di depan belitan shunt.

Gambar 12. Diagram Rangkaian Generator Kompon
Karakteristik Generator Kompon

Gambar 13. Karakteristik Generator Kompon
Gambar 13 menunjukkan karakteristik generator kompon. Tegangan output generator terlihat konstan dengan pertambahan arus beban, baik pada arus eksitasi penuh maupun eksitasi 50%. Hal ini disebabkan oleh adanya penguatan lilitan seri, yang cenderung naik tegangannya jika arus beban bertambah besar. Jadi ini merupakan kompensasi dari generator shunt, yang cenderung tegangannya akan turun jika arus bebannya naik

Kamis, 17 Februari 2011

Ditemukan Gorila Berpunggung Perak di Planet Mars !


JIKA foto yang dimuat The Sun ini benar adanya, bisa jadi planet Mars memang memiliki kehidupan. Seorang peneliti Nigel Cooper yang telah mempelajari ribuan foto yang diambil NASA menemukan sosok primat Gorila di Mars. Cooper yang sekian lama meneliti kehidupan di Mars lewat foto-foto yang didapatnya dari NASA, Badan Antariksa Amerika Serikat menemukan sebuah foto yang aneh, karena dalam satu foto yang dikirim lewat mesin robot membuktikan planet merah ini memiliki tanda-tanda kehidupan.

Dalam sebuah posting online - nya, Copper yang kini berusia 43 tahun dari Grimsby Lincs mengatakan, “Sudah pasti itu makhluk hidup.” “Saya yakin, ada kehidupan di sana (Mars),” imbuhnya. Dari foto yang dimuat The Sun memang terlihat jelas jika sosok primata yang sering ditemui di Afrika itu terekam jelas. Gorila berpunggung perak, seperti dalam film Kongo.

Jika penemuan ini benar adanya, maka Mars memang memiliki kehidupan dan bisa menjadi alternatif tempat tinggal manusia mengingat Bumi sudah mulai sesak dan panas karena pemanasan global. Dalam film Hollywood, ‘Planet The Ape’ digambarkan manusia tergusur oleh primata monyet dan dikuasai oleh primata yang kabarnya menjadi nenek moyang manusia di Bumi ini.

Sepeda Motor Berlapis Emas Seharga Rp 45 Miliar



Inilah Kandidat Motor Termahal di Dunia, Berlapis Emas 24 Karat

Banyak orang menggunakan sepeda motor karena kepraktisannya, ada pula yang buat hobi. Tapi sepeda motor ternyata bisa menjadi simbol kemapanan dan prestise seseorang.

Hal tersebut tidaklah mengherankan, terlebih bila motor inilah yang dijadikan penghias garasi rumah anda. Bagaimana tidak, dengan sepuhan emas asli 24 karat di sekujur tubuhnya, motor ini tentu akan menyilaukan mata para tetangga.

Dan hebatnya lagi, lapisan emas yang ada di motor ini bukanlah hanya sebuah aksen saja, namun benar-benar terbuat dari pelat emas 24 karat.

Seperti dikutip Streetfire, lapisan emas menjadi bagian dari modifikasi motor bergaya chooper ini, hampir seluruh detail motor ini dilapisi emas murni.

Mulai dari tangki bensin, spakbor depan dan belakang hingga palang pada pelek motor ini pun terbuat dari emas. Tidak hanya itu detail lain seperti lapisan blok mesin pun juga terbuat dari emas.

Bahkan rantai yang menghubungkan putaran mesin dan roda motor pun juga terbuat dari logam abadi ini.

Seluruh detail tersebut, berpadu apik dengan siraman aksen krom di banyak bagian yang secara langsung mampu menhadirkan kesan elegan dan mewah sekaligus.

Karena itulah tidaklah salah bila banderol motor ini pun selangit yakni mencapai US$ 500.000 atau sekitar Rp 4,58 miliar.

Dan tidak heran bila dengan harga segitu, motor ini pun juga menjadi salah satu kandidat motor termahal di dunia.

Tutorial Membuat Robot Canggih dan Cerdas


tutorial membuat robot cerdas imageTim yang masuk final Kontes Robot Indonesia (KRI) dan Kontes Robot Cerdas Indonesia (KRCI) 2008 secara resmi diumumkan hari ini (lihat di: Pengumuman Final KRI/KRCI 2008). Dua puluh empat (24) tim berhak bertarung dalam lomba robot panjat pinang (KRI) dan 37 tim robot bertarung dalam kontes robot cerdas pemadam api (KRCI). Bagaimana cara membuat robot-robot itu agar bisa hebat & cerdas? Dalam tutorial ini akan dijelaskan langkah-langkah membuat robot cerdas, baik KRI/KRCI.

Tahap-tahap pembuatan robot

Secara garis besar, tahapan pembuatan robot dapat dilihat pada gambar berikut:
tutorial membuat robot cerdas tahapan pembuatan
Ada tiga tahapan pembuatan robot, yaitu:
  1. Perencanaan, meliputi: pemilihan hardware dan design.
  2. Pembuatan, meliputi pembuatan mekanik, elektonik, dan program.
  3. Uji coba.

1. Tahap perencanan

Dalam tahap ini, kita merencanakan apa yang akan kita buat, sederhananya, kita mau membuat robot yang seperti apa? berguna untuk apa? Hal yang perlu ditentukan dalam tahap ini:
  • Dimensi, yaitu panjang, lebar, tinggi, dan perkiraan berat dari robot. Robot KRI berukuran tinggi sektar 1m, sedangkan tinggi robot KRCI sekitar 25 cm.
  • Struktur material, apakah dari alumunium, besi, kayu, plastik, dan sebagainya.
  • Cara kerja robot, berisi bagian-bagian robot dan fungsi dari bagian-bagian itu. Misalnya lengan, konveyor, lift, power supply.
  • Sensor-sensor apa yang akan dipakai robot.
  • Mekanisme, bagaimana sistem mekanik agar robot dapat menyelesaikan tugas.
  • Metode pengontrolan, yaitu bagaimana robot dapat dikontrol dan digerakkan, mikroprosesor yanga digunakan, dan blok diagram sistem.
  • Strategi untuk memenangkan pertandingan, jika memang robot itu akan diikutkan lomba/kontes robot Indonesia/Internasional.

2. Tahap pembuatan

Ada tiga perkerjaan yang harus dilakukan dalam tahap ini, yaitu pembuatan mekanik, elektronik, dan programming. Masing-masing membutuhkan orang dengan spesialisasi yang berbeda-beda, yaitu:
  • Spesialis Mekanik, bidang ilmu yang cocok adalah teknik mesin dan teknik industri.
  • Spesialis Elektronika, bidang ilmu yang cocok adalah teknik elektro.
  • Spesialis Programming, bidang ilmu yang cocok adalah teknik informatika.
Jadi dalam sebuah tim robot, harus ada personil-personil yang memiliki kemampuan tertentu yang saling mengisi. Hal ini diperlukan dalam membentuk Tim Kontes Robot Indonesia (KRI) atau Kontes Robot Cerdas Indonesia (KRCI). Bidang ilmu yang saya sebutkan tadi, tidak harus diisi mahasiswa/alumni jurusan atau program studi tersebut, misalnya boleh saja mahasiswa jurusan teknik mesin belajar pemrograman.
Untuk mengikuti lomba KRI/KRCI dibutuhkan sebuah tim yang solid. Tetapi buat Anda yang tertarik membuat robot karena hobby atau ingin belajar, semua bisa dilakukan sendiri, karena Anda tidak terikat dengan waktu atau deadline. Jadi Anda bisa melakukannya dengan lebih santai.
Pembuatan mekanik
Setelah gambaran garis besar bentuk robot dirancang, maka rangka dapat mulai dibuat. Umumnya rangka robot KRI terbuat dari alumunium kotak atau alumunium siku. Satu ruas rangka terhubung satu sama lain dengan keling alumunium. Keling adalah semacam paku alumunium yang berguna untuk menempelkan lembaran logam dengan erat. Rangka robot KRCI lebih variatif, bisa terbuat dari plastik atau besi panjang seperti jeruji.
Pembuatan sistem elektronika
Bagian sistem elektronika dirancang sesuai dengan fungsi yang diinginkan. Misalnya untuk menggerakkan motor DC diperlukan h-brigde, sedangkan untuk menggerakkan relay diperlukan saklar transistor. Sensor-sensor yang akan digunakan dipelajari dan dipahami cara kerjanya, misalnya:
  1. Sensor jarak, bisa menggunakan SRF04, GP2D12, atau merakit sendiri modul sensor ultrasonik atau inframerah.
  2. Sensor arah, bisa menggunakan sensor kompas CMPS03 atau Dinsmore.
  3. Sensor suhu, bisa menggunakan LM35 atau sensor yang lain.
  4. Sensor nyala api/panas, bisa menggunakan UVTron atau Thermopile.
  5. Sensor line follower / line detector, bisa menggunakan led & photo transistor.
Berikut ini gambar sensor ultrasonik, inframerah, UVTron, dan kompas:
tutorial membuat robot cerdas srf 04tutorial membuat robot cerdas gp2d12kompas CMPS03
Pembuatan sistem elektronika ini meliputi tiga tahap:
  • Design PCB, misalnya dengan program Altium DXP.
  • Pencetakan PCB, bisa dengan Proboard.
  • Perakitan dan pengujian rangkaian elektronika.
tutorial membuat robot cerdas design pcb
Pembuatan Software/Program
Pembuatan software dilakukan setelah alat siap untuk diuji. Software ini ditanamkan (didownload) pada mikrokontroler sehingga robot dapat berfungsi sesuai dengan yang diharapkan.
tutorial membuat robot cerdas pemrograman
Tahap pembuatan program ini meliputi:
  1. Perancangan Algoritma atau alur program
    Untuk fungsi yang sederhana, algoritma dapat dibuat langsung pada saat menulis program. Untuk fungsi yang kompleks, algoritma dibuat dengan menggunakan flow chart.
  2. Penulisan Program
    Penulisan program dalam Bahasa C, Assembly, Basic, atau Bahasa yang paling dikuasai.
  3. Compile dan download, yaitu mentransfer program yang kita tulis kepada robot.

3. Uji coba

Setelah kita mendownload program ke mikrokontroler (otak robot) berarti kita siap melakukan tahapan terakhir dalam membuat robot, yaitu uji coba. Untuk KRCI, ujicoba dilakukan pada arena seluas sekitar 4×4 meter dan berbentuk seperti puzzle. Dalam arena KRCI ini diletakkan lilin-lilin yang harus dipadamkan oleh robot cerdas pemadam api. Contoh gambar robot pemadam api Ted Larsorn dan arena Kontes Robot Cerdas Indonesia (KRCI).
tutorial membuat robot cerdas contoh robot cerdasarena-lomba-krci
Untuk lomba robot KRI, dibutuhkan ruangan yang lebih besar, yaitu sekitar 15×15 meter. Dalam Kontes Robot Indonesia (KRI) 2008, masing-masing robot harus meraih target (bola/kubus) yang diletakkan di tempat yang tinggi, jadi sebuah robot harus bisa naik di atas robot yang lain untuk meraih target tersebut (seperti panjat pinang).
arena kri
Final Kontes Robot Indonesia (KRI) dan Kontes Robot Cerdas Indonesia (KRCI) sudah diadakan tanggal 14-15 Juni 2008 di Balairung UI Depok.