Selasa, 10 Agustus 2010

Catu Daya 5 volt 5 A - dengan pass transistor

Pada satu tulisan di website ini, ada artikel yang membahas tentang desain catu daya teregulasi (regulated power supply) dengan menggunakan komponen regulator tegangan positif seri 78XX. Misalnya adalah regulator tengangan positif 5 volt dengan komponen 7805. Dengan menggunakan komponen seperti ini, dengan mudah dapat dibuat rangkaian catu daya yang sangat baik regulasi tegangan keluarannya. Namun, komponen 7805 hanya bisa efektif mencatu arus sampai 1 A saja. Catu daya 5 volt umumnya banyak sekali digunakan untuk mencatu berbagai aplikasi, sehingga kadang kala catu arus 1A tidak cukup.
Pada tulisan kali ini electroniclab menyajikan desain catu daya teregulasi 5 volt yang dapat mensuplai arus sampai 5 A, setidaknya ini yang pernah diuji coba di workshop electroniclab. Sebenarnya rangkaian ini bisa mencatu sampai 10 A atau bahkan lebih jika pembaca tahu kiat-kiat untuk memodifikasinya.
Inti dari rangkaian ini tentu saja adalah rangkaian dasar regulator 5 volt dengan 7805. Perbedaannya adalah, pada rangkaian ini ditambahkan rangkaian pass transistor yang terdiri dari transistor Q1 serta 2 buah resistor R1 dan R2. Komponen 7805 memegang kendali meregulasi tegangan output, dan rangkaian pass transistor berperan penting untuk mengalirkan arus selebihnya ke beban RL.
Transistor yang digunakan adalah transistor PNP yaitu MJ2955. Transistor ini dikenal dengan sebutan bipolar silicon power transistor yang banyak dijumpai di pasar. Pembaca pada prinsipnya bisa mengantikannya dengan power transistor bipolar lain, asal saja dengan karakteristik yang hampir sama. Dari datasheet, dapat diketahui bahwa transistor ini termasuk kategori transistor power karena arus kolektor Ic dapat mencapai 15A dengan disipasi daya yang bisa mencapai 115 watts. Tentu dalam mendesain suatu rangkaian semestinya batas-batas maksimum ini perlu diketahui, sehingga tidak melampaui batas optimum yang dapat dicapai.
Catu daya 5V 5A dengan pass transistor
Perhatikan gambar rangkaian diatas. Pada arus loop tertutup yang melewati resistor R1, R2 dan emiter-base transistor Q1, dapat dirumuskan secara matematis :
I1R1 = IeR2 + Vbe(on) ……… (1)
Untuk transistor silicon biasanya Vbe(on) = 0.7 volt, yaitu tegangan base-emitor yang menyebabkan transistor mulai bekerja (ON). Dari datasheet diketahui tegangan ini Vbe(on) ini dapat bervariasi antara 0.6 ~ 1.4 volt tergantung dari besar arus Ic yang melewati transistor tersebut. Namun untuk penyederhanaan perhitungan, kita tetapkan saja Vbe(on) = 0.7 volt.
I1 adalah arus yang melewati 7805 yang seterusnya akan mensuplai beban RL. Dengan rangkaian ini kita akan menetapkan besar arus yang boleh melewati 7805, misalkan anda menetapkan arus I1 = 500 mA. Lalu bagaimana caranya mensuplai arus ke beban RL sampai 5A ? Tentu saja arus selebihnya akan dilewatkan melalui transistor MJ2955. Dari rumus (1) dapat dimengerti bahwa arus Ie yang melewati R2 akan mulai mengalir hanya jika tegangan jepit pada resistor R1 lebih besar dari Vbe(on) atau secara matematis :
I1R1 >= Vbe(on) …. (2)
Jika besaran di atas disubsitusikan ke rumus (2) maka dapat dihitung besar R1 yang dibutuhkan adalah :
R1 = Vbe(0n)/I1 = 0.7/0.5 = 1.4 Ohm
Bagaimana menetapkan besar arus I1 = 500 mA, boleh kah lebih atau kurang. Jika kita runut sedikit ke belakang, pertama kita ingin membuat catu daya dengan Io = 5 A. Pada rangkaian di atas, Io = Ic + Io’. Kalau kita anggap Io’ cukup kecil dibanding Ic, maka dapat ditulis Ic = Io. Dari teori transistor diketahui bahwa Ic = Hfe Ib. Dari datasheet MJ2955 diketahui besar Hfe ini 20 ~ 70. Anda bisa mencari transistor dengan Hfe = 50. Jika ini yang dipakai, maka arus base yang mesti disuplai adalah Ib = Ic/Hfe = 5/50 = 100 mA. Dengan perhitungan ini tidak salah kalau diasumsikan arus masksimum yang boleh melewati R1 sebesar 500 mA. Karena akan cukup mensuplai arus base Ib (sebesar 100 mA) yang diperlukan transistor Q1 mensuplai arus Ic mencapai 5 A.
Besar resistansi R2 dapat dihitung dengan loop dari Vin ke Vout melalui transistor Q1 yang dirumuskan dengan :
Vin = IeR2 + Vce(on) + Vout …. (3)
Vin adalah tegangan keluaran dari rangkaian penyearah yang dibuat dari rangkaian trafo, dioda bridge dan kapasitor elco. Jika misalnya Vin = 7 volt dan tegangan keluaran Vout = 5 volt, maka rumus (3) dapat ditullis menjadi :
7 = IeR2 + Vce(on) + 5
atau
IeR2 + Vce(on) = 2 volt ….. (4)
Inilah garis beban atau garis kerja transistor Q1. Dengan anggapan bahwa Ie = Ic = 5 A dan Vce(on) = 0 volt (ideal) ketika transistor Q1 bekerja (ON), maka dapat dihitung besar R2 = 2/5 = 0.4 Ohm. Selesai … ? tentu saja belum, karena harus ditentukan besar watt dari resistor ini. Dari rumus umum P = I2R dapat dihitung disipasi daya pada resistor R2 adalah P = 52(0.4) = 10 watt (minimun), maka yang digunakan adalah resistor 0.4 Ohm 20 watt supaya aman.
Demikian urutan dari perancangan catu daya ini. Tentu rancangan ini dapat dimodifikasi sesuai dengan kebutuhan. Sebagai tips terakhir, Dengan arus yang demikian besar, temperatur resistor dan transistor akan sedemikian panas. Sangat dianjurkan menggunakan heatsink untuk transistor Q1 dan juga resitor R2. Komponen 7805 mestinya tidak memerlukan heatsink, karena arus yang melewati komponen ini relatif kecil sekali. Kapasitor elco C1 adalah anjuran dari datasheet 7805 agar tegangan output lebih stabil.
Untuk kebutuhan arus yang lebih besar lagi, transistor Q1 bisa diganti dengan transistor Darlington atau dengan cara meng-cascade rangkaian pass transistor menjadi 2 atau 3 tingkat. Pada prinsipnya, perhitungan di atas dapat juga diterapkan untuk mendesain rangkaian catu daya lain misalnya 12 volt ataupun 24 volt.

Decade Counter Up/Down 74LS192 - dengan tampilan LED 7

Ada beberapa pertanyaan dan permintaan yang ditujukan kepada ElectronicLab agar membahas rangkaian counter yang akan digunakan untuk berbagai keperluan. Mulai dari aplikasi sederhana penghitung botol di ban berjalan, display nomer antrian di sebuah praktek dokter, display timer untuk lomba renang, sampai yang agak rumit untuk menampilkan jumlah rotasi dalam satu menit putaran mesin. Ada juga pertanyaan yang cukup punya alasan, yaitu permintaan konsultasi dari seorang siswa yang ingin membuat penghitung jumlah orang yang keluar masuk sebuah kelas. Lampu kelas akan segera menyala jika ada orang pertama masuk kelas dan lampu mati dengan sendirinya jika orang terakhir sudah keluar. Pada kesempatan ini, ElectronicLab akan membahas rangkaian counter up/down tersebut secara umum. Pembaca sekalian tentu dapat memodifikasi bagian-bagian tertentu dari rangkaian ini untuk disesuaikan dengan aplikasi yang sedang anda buat.
Komponen-komponen penting pada rangkaian yang akan dibuat adalah 74LS192, lalu ada driver display IC 74LS47 (BCD to 7 segment driver) dan indikator display LED 7 segment common anode. Sebenarnya ada pencacah lain, seperti 4 bit binary counter yang bisa mencacah sampai 16, tetapi di sini yang digunakan adalah pencacah 10 (decade counter) karena yang hendak dibuat adalah alat pencacah bilangan desimal.
Komponen utama IC 74LS192 adalah sebuah up/down decade counter, yaitu sebuah komponen yang dapat melakukan pencacahan sampai 10 (0 sampai 9) naik dan turun. Komponen 16 pin ini cukup banyak dapat dijumpai di toko komponen elektronika. 74LS192 dibangun dengan beberapa flip-flop JK dan gerbang-gerbang logik. Transisi logik dari 0 ke 1 (Low to High) pada pin UP (pin 5), menyebabkan keluaran BCD (binary code decimal) QA,QB,QC dan QD menaik 1 digit.
Demikian juga jika ada transisi logik 0 ke 1 pada pin DN (pin 4), menyebabkan keluaran BCD turun 1 digit. Ada baiknya jika dijelaskan sedikit tentang aturan dari BCD seperti yang ada pada tabel disebelah ini. Pada tabel ini ditunjukkan kode biner 4 bit QD .. QA me-representasikan kode desimal dari 0 hingga 9.
Agar dapat dimengerti oleh orang yang melihatnya, kode biner ini diubah untuk men-drive LED 7 segment dengan menggunakan komponen IC 74LS47. Dengan demikian, rangkaian ini dapat menampilkan angka desimal yang sesuai. Pada rangkaian ini dipakai LED 7 segment Common Anoda, dimana semua anoda dari masing-masing LED segment-nya terhubung menjadi satu dan mendapat suplai Vcc. Untuk menyalakan satu segmentnya, pin LED 7 segment yang bersangkutan harus di-sink (short) ke ground melalui sebuah resistor. Resistor yang digunakan adalah 100 Ohm dan ini sudah cukup terang untuk menyalakan segment LED ini. Untuk lebih jelas, diagram LED 7 segment itu ditunjukkan pada kedua gambar di atas.
IC 74LS192 dilengkapi juga dengan pin keluaran CO (Carry Out) dan BO (Borrow Out) yang masing-masing adalah normally high dan bekerja secara terpisah. Transisi keluaran desimal dari 9 ke 0 (counting up) men-trigger pin CO mengeluarkan pulsa 0 ke 1 (Low to High). Sebaliknya transisi desimal dari 0 ke 9 (counting down), men-trigger pin BO mengeluarkan pulsa 0 ke 1. Dengan demikian kedua keluaran ini dapat dipakai sebagai trigger clock untuk tingkat pencacahan berikutnya. Seperti contoh pada rangkaian-1 di bawah ini, 2 buah IC 74LS192 di-cascade untuk membuat pencacah nilai satuan dan puluhan. Pembaca dengan mudah tentu dapat melanjutkannya jika perlu membuat pencacah tingkat berikutnya untuk nilai ratusan, ribuan dan seterusnya.
rangkaian-1 : pencacah naik dan turun desimal puluhan
Perlu diingat, rangkaian pencacah ini akan bekerja jika pin CLR = 0 (low). Untuk itu port input RESET harus di ground atau diberi logik 0 dalam keadaan normal. Reset (tampilan desimal menunjukkan angka 0) berlaku jika pada pin CLR (pin 14) ada transisi logik dari 0 ke 1. Demikian juga dengan pin UP dan pin DN, akan bekerja (counter naik/turun) hanya jika ada transisi dari 0 ke 1 pada pin ini. Pembaca perlu menambahkan rangkaian saklar (tombol) untuk men-trigger counter (naik/turun) maupun Reset.
rangkaian-2 : tombol saklar penghasil pulsa clock

Pembaca dapat mencoba rangkaian-2 di atas untuk membuat saklar penghasil pulsa clock masing-masing bagi Count Up, Count Down ataupun RESET pada rangkaian-1. Di sini digunakan IC 74LS14 yang tidak lain adalah inverter schmitt trigger yang banyak digunakan untuk menghasilkan pulsa yang bebas bouncing. Dengan tambahan resistor pull up dan kapasitor keramik, dapat dihasilkan pulsa clock yang bebas noise. Ini berguna untuk mencegah counter naik atau turun 2, 3 digit atau lebih, padahal anda hanya menekan tombol saklar ini satu kali saja. Prinsip yang sama tentu bisa saja dilakukan dengan mengganti tombol-tombol ini dengan sensor cahaya, misalnya dengan menggunakan sensor photo-transistor.
Mudah-mudahan penjelasaan ini cukup membantu siswa di atas dengan idenya yang ingin membuat lampu kelasnya menyala jika ada orang yang masuk dan padam otomatis jika semua orang sudah keluar. Rangkaiannya mesti diperiksa dengan teliti jika sekiranya lampu kelasnya itu menyala dan padam sendiri, padahal tidak ada orang yang melintas sensor photo-transistor. Apalagi waktu itu adalah malam jum'at kliwon :)

IC Timer 555

Kalau ditanya apa komponen elektronika yang paling popular dan serba guna, maka jawabnya adalah IC timer 555. IC timer jenis ini sudah dikenal dan masih populer sampai saat ini sejak puluhan tahun yang lalu. Tepatnya IC 555 pertama kali dibuat oleh Signetics Corporation pada tahun 1971. IC timer 555 memberi solusi praktis dan relatif murah untuk berbagai aplikasi elektronik yang berkenaan dengan pewaktuan (timing). Terutama dua aplikasinya yang paling populer adalah rangkaian pewaktu monostable dan osilator astable. Jeroan utama komponen ini terdiri dari komparator dan flip-flop yang direalisasikan dengan banyak transistor.
 Gambar 1 : IC Timer 555
Dari dulu hingga sekarang, prinsip kerja komponen jenis ini tidak berubah namun masing-masing pabrikan membuatnya dengan desain IC dan teknologi yang berbeda-beda. Hampir semua pabrikan membuat komponen jenis ini, walaupun dengan nama yang berbeda-beda. Misalnya National Semiconductor menyebutnya dengan LM555, Philips dan Texas Instrument menamakannya SE/NE555. Motorola / ON-Semi mendesainnya dengan transistor CMOS sehingga komsusi powernya cukup kecil dan menamakannya MC1455. Philips dan Maxim membuat versi CMOS-nya dengan nama ICM7555. Walaupun namanya berbeda-beda, tetapi fungsi dan pin diagramnya saling kompatibel satu dengan yang lainnya (functional and pin-to-pin compatible). Hanya saja ada beberapa karakteristik spesifik yang berbeda misalnya konsumsi daya, frekuensi maksimum dan sebagainya. Spesifikasi lebih detail biasanya dicantumkan pada datasheet masing-masing pabrikan. Dulu pertama kali casing dibuat dengan 8 pin T-package (tabular dari kaleng mirip transistor), namun sekarang lebih umum dengan kemasan IC DIP 8 pin.
Rangkaian Monostable
IC ini didesain sedemikian rupa sehingga hanya memerlukan sedikit komponen luar untuk bekerja. Diantaranya yang utama adalah resistor dan kapasitor luar (eksternal). IC ini memang bekerja dengan memanfaatkan prinsip pengisian (charging) dan pengosongan (discharging) dari kapasitor melalui resistor luar tersebut. Untuk menjelaskan prinsip kerjanya, coba perhatikan diagram gambar IC 555 dengan resistor dan kapasitor luar berikut ini. Rangkaian ini tidak lain adalah sebuah rangkaian pewaktu (timer) monostable. Prinsipnya rangkaian ini akan menghasilkan pulsa tunggal dengan lama tertentu pada keluaran pin 3, jika pin 2 dari komponen ini dipicu. Perhatikan di dalam IC ini ada dua komparator yaitu Comp A dan Comp B. Perhatikan juga di dalam IC ini ada 3 resistor internal R yang besarnya sama. Dengan susunan seri yang demikian terhadap VCC dan GND, rangkaian resistor internal ini merupakan pembagi tegangan. Susunan ini memberikan tegangan referensi yang masing-masing besarnya 2/3 VCC pada input negatif komparator A dan 1/3 VCC pada input positif komparator B.

Gambar 2 : Rangkaian pewaktu monostable
Pada keadaan tanpa input, keluaran pin 3 adalah 0 (ground atau normally low). Transistor Q1 yang ada di dalam IC ini selalu ON dan mencegah kapasitor eksternal C dari proses pengisisian (charging). Ketika ada sinyal trigger dari 1 ke 0 (VCC to GND) yang diumpankan ke pin 2 dan lebih kecil dari 1/3 VCC, maka serta merta komparator B men-set keluaran flip-flop. Ini pada gilirannya memicu transistor Q1 menjadi OFF. Jika transistor Q1 OFF akan membuka jalan bagi resistor eksternal R untuk mulai mengisi kapasitor C (charging). Pada saat yang sama output dari pin 3 menjadi high (VCC), dan terus high sampai satu saat tertentu yang diinginkan. Sebut saja lamanya adalah t detik, yaitu waktu yang diperlukan untuk mengisi kapasitor C mencapai tegangan 2/3 VCC. Tegangan C ini disambungkan ke pin 6 yang tidak lain merupakan input positif comp A. Maka jika tegangan 2/3 VCC ini tercapai, komparator A akan men-reset flip-flop dan serta merta transistor internal Q1 menjadi ON kembali. Pada saat yang sama keluaran pin 3 dari IC 555 tersebut kembali menjadi 0 (GND).
Berapa lama pulsa yang dihasilkan amat tergantung dari nilai resitor dan kapasitor eksternal yang pasangkan. Dari rumus ekponensial pengisian kapasitor diketahui bahwa :
Vt = VCC(1- e-t/RC) ….. (1)
Vt adalah tegangan pada saat waktu t. Jika t adalah waktu eksponensial yang diperlukan untuk mengisi kapasitor sampai Vt = 2/3 VCC, maka rumus (1) dapat disubstitusi dengan nilai ini menjadi :
2/3 = 1-e-t/RC
1/3 = e-t/RC
ln(1/3) = -t/RC dan seterusnya dapat diperoleh
t = (1.0986123)RC yang dibulatkan menjadi
t = 1.1 RC
Inilah rumusan untuk mengitung lamanya keluaran pulsa tunggal yang dapat dihasilkan dengan rangkaian monostable dari IC 555.
Rangkaian Astable
Sedikit berdeda dengan rangkaian monostable, rangkaian astable dibuat dengan mengubah susunan resitor dan kapasitor luar pada IC 555 seperti gambar berikut. Ada dua buah resistor Ra dan Rb serta satu kapasitor eksternal C yang diperlukan. Prinsipnya rangkaian astable dibuat agar memicu dirinya sendiri berulang-ulang sehingga rangkaian ini dapat menghasilkan sinyal osilasi pada keluarannya. Pada saat power supply rangkaian ini di hidupkan, kapasitor C mulai terisi melalui resistor Ra dan Rb sampai mencapai tegangan 2/3 VCC. Pada saat tegangan ini tercapai, dapat dimengerti komparator A dari IC 555 mulai bekerja mereset flip-flop dan seterusnya membuat transistor Q1 ON. Ketika transisor ON, resitor Rb seolah dihubung singkat ke ground sehingga kapasitor C membuang muatannya (discharging) melalui resistor Rb. Pada saat ini keluaran pin 3 menjadi 0 (GND). Ketika discharging, tegangan pada pin 2 terus turun sampai mencapai 1/3 VCC. Ketika tegangan ini tercapai, bisa dipahami giliran komparator B yang bekerja dan kembali memicu transistor Q1 menjadi OFF. Ini menyebabkan keluaran pin 3 kembali menjadi high (VCC). Demikian seterusnya berulang-ulang sehingga terbentuk sinyal osilasi pada keluaran pin3. Terlihat di sini sinyal pemicu (trigger) kedua komparator tersebut bekerja bergantian pada tegangan antara 1/3 VCC dan 2/3 VCC. Inilah batasan untuk mengetahui lebar pulsa dan periode osilasi yang dihasilkan. Misal diasumsikan t1 adalah waktu proses pengisian kapasitor yang di isi melalui resistor Ra dan Rb dari 1/3 VCC sampai 2/3 VCC. Diasumsikan juga t2 adalah waktu discharging kapasitor melalui resistor Rb dari tegangan 2/3 VCC menjadi 1/3 VCC. Dengan perhitungan eksponensial dengan batasan 1/3 VCC dan 2/3 VCC maka dapat diperoleh :
t1 = ln(2) (Ra+Rb)C = 0.693 (Ra+Rb)C
dan
t2 = ln(2) RbC = 0.693 RbC

Gambar 3 : Rangkaian osilator astable
Periode osilator adalah dapat diketahui dengan menghitung T = t1 + t2. Persentasi duty cycle dari sinyal osilasi yang dihasilkan dihitung dari rumus t1/T. Jadi jika diinginkan duty cycle osilator sebesar (mendekati) 50%, maka dapat digunakan resistor Ra yang relatif jauh lebih kecil dari resistor Rb.
Penutup
Satu hal yang menarik dari komponen IC 555, baik timer aplikasi rangkaian monostable maupun frekuensi osilasi dari rangkaian astable tidak tergantung dari berapa nilai tegangan kerja VCC yang diberikan. Tegangan kerja IC 555 bisa bervariasi antara 5 sampai 15 Vdc. Tingkat keakuratan waktu (timing) yang dihasilkan tergantung dari nilai dan toleransi dari resistor dan kapasitor eksternal yang digunakan. Untuk rangkaian yang tergolong time critical, biasanya digunakan kapasitor dan resistor yang presisi dengan toleransi yang kecil. Pada banyak nota aplikasi, biasanya juga ditambahkan kapasitor 10 nF pada pin 5 ke ground untuk menjamin kestabilan tegangan referensi 2/3 VCC. Banyak aplikasi lain yang bisa dibuat dngan IC 555, salah satu aplikasi yang populer lainnya adalah rangkaian PWM (Pulse Width Modulation). Rangkaian PWM mudah direalisasikan dengan sedikit mengubah fungsi dari rangkaian pewaktu monostable. Yaitu dengan memicu pin trigger (pin 2) secara kontiniu sesuai dengan perioda clock yang diinginkan, sedangkan lebar pulsa dapat diatur dengan memberikan tegangan variabel pada pin control voltage (pin5). Di pasaran banyak juga jumpai dua timer 555 yang dikemas didalam satu IC misalnya IC LM556 atau MC1456.

Thyristor - SCR, TRIAC dan DIAC

Thyristor berakar kata dari bahasa Yunani yang berarti ‘pintu'. Dinamakan demikian barangkali karena sifat dari komponen ini yang mirip dengan pintu yang dapat dibuka dan ditutup untuk melewatkan arus listrik. Ada beberapa komponen yang termasuk thyristor antara lain PUT (programmable uni-junction transistor), UJT (uni-junction transistor ), GTO (gate turn off switch), photo SCR dan sebagainya. Namun pada kesempatan ini, yang akan kemukakan adalah  komponen-komponen thyristor yang dikenal dengan sebutan SCR (silicon controlled rectifier), TRIAC dan DIAC. Pembaca dapat menyimak lebih jelas bagaimana prinsip kerja serta aplikasinya.
Struktur Thyristor
Ciri-ciri utama dari sebuah thyristor adalah komponen yang terbuat dari bahan semiconductor silicon. Walaupun bahannya sama, tetapi struktur P-N junction yang dimilikinya lebih kompleks dibanding transistor bipolar atau MOS. Komponen thyristor lebih digunakan sebagai saklar (switch) ketimbang sebagai penguat arus atau tegangan seperti halnya transistor. 
 
Gambar-1 : Struktur Thyristor

Struktur dasar thyristor adalah struktur 4 layer PNPN seperti yang ditunjukkan pada gambar-1a. Jika dipilah, struktur ini dapat dilihat sebagai dua buah struktur junction PNP dan NPN yang tersambung di tengah seperti pada gambar-1b. Ini tidak lain adalah dua buah transistor PNP dan NPN yang tersambung pada masing-masing kolektor dan base. Jika divisualisasikan sebagai transistor Q1 dan Q2, maka struktur thyristor ini dapat diperlihatkan seperti pada gambar-2 yang berikut ini.
Gambar-2 : visualisasi dengan  transistor
Terlihat di sini kolektor transistor Q1 tersambung pada base transistor Q2 dan sebaliknya kolektor transistor Q2 tersambung pada base transistor Q1.  Rangkaian transistor yang demikian menunjukkan adanya loop penguatan arus di bagian tengah. Dimana diketahui bahwa Ic = b Ib, yaitu arus kolektor adalah penguatan dari arus base. 
Jika misalnya ada arus sebesar Ib yang mengalir pada base transistor Q2, maka akan ada arus Ic yang mengalir pada kolektor Q2. Arus kolektor ini merupakan arus base Ib pada transistor Q1, sehingga akan muncul penguatan pada pada arus kolektor transistor Q1. Arus kolektor transistor Q1 tdak lain adalah arus base bagi transistor Q2. Demikian seterusnya sehingga makin lama sambungan PN dari thyristor ini di bagian tengah akan mengecil dan hilang. Tertinggal hanyalah lapisan P dan N dibagian luar. 
Jika keadaan ini tercapai, maka struktur yang demikian todak lain adalah struktur dioda PN (anoda-katoda) yang sudah dikenal. Pada saat yang demikian, disebut bahwa thyristor dalam keadaan ON dan dapat mengalirkan arus dari anoda menuju katoda seperti layaknya sebuah dioda. 
Gambar-3 : Thyristor diberi tegangan
Bagaimana kalau pada thyristor ini kita beri beban lampu dc dan diberi suplai tegangan dari nol sampai tegangan tertentu seperti pada gambar 3. Apa yang terjadi pada lampu ketika tegangan dinaikkan dari nol. Ya betul, tentu saja lampu akan tetap padam karena lapisan N-P yang ada ditengah akan mendapatkan reverse-bias (teori dioda). Pada saat ini disebut thyristor dalam keadaan OFF karena tidak ada arus yang bisa mengalir atau sangat kecil sekali. Arus tidak dapat mengalir sampai pada suatu tegangan reverse-bias tertentu yang menyebabkan sambungan NP ini jenuh dan hilang. Tegangan ini disebut tegangan breakdown dan pada saat itu arus mulai dapat mengalir melewati thyristor sebagaimana dioda umumnya. Pada thyristor tegangan ini disebut tegangan breakover Vbo.
SCR
Telah dibahas, bahwa untuk membuat thyristor menjadi ON adalah dengan memberi arus trigger lapisan P yang dekat dengan katoda. Yaitu dengan membuat kaki gate pada thyristor PNPN seperti pada gambar-4a. Karena letaknya yang dekat dengan katoda, bisa juga pin gate ini disebut pin gate katoda (cathode gate). Beginilah SCR dibuat dan simbol SCR digambarkan seperti gambar-4b. SCR dalam banyak literatur disebut Thyristor saja.
Gambar-4 : Struktur SCR
Melalui kaki (pin) gate tersebut memungkinkan komponen ini di trigger menjadi ON, yaitu dengan memberi arus gate.  Ternyata dengan memberi arus gate Ig yang semakin besar dapat menurunkan tegangan breakover (Vbo) sebuah SCR. Dimana tegangan ini adalah tegangan minimum yang diperlukan SCR untuk menjadi ON. Sampai pada suatu besar arus gate tertentu, ternyata akan sangat mudah membuat SCR menjadi ON. Bahkan dengan tegangan forward yang kecil sekalipun. Misalnya 1 volt saja atau lebih kecil lagi. Kurva tegangan dan arus dari sebuah SCR adalah seperti yang ada pada gambar-5 yang berikut ini.

Gambar-5 : Karakteristik kurva I-V SCR 
Pada gambar tertera tegangan breakover Vbo, yang jika tegangan forward SCR mencapai titik ini, maka SCR akan ON. Lebih penting lagi adalah arus Ig yang dapat menyebabkan tegangan Vbo turun menjadi lebih kecil. Pada gambar ditunjukkan beberapa arus Ig dan korelasinya terhadap tegangan breakover. Pada datasheet SCR, arus trigger gate ini sering ditulis dengan notasi IGT (gate trigger current). Pada gambar ada ditunjukkan juga arus Ih yaitu arus holding yang mempertahankan SCR tetap ON. Jadi agar SCR tetap ON maka arus forward dari anoda menuju katoda harus berada di atas parameter ini.
Sejauh ini yang dikemukakan adalah bagaimana membuat SCR menjadi ON. Pada kenyataannya, sekali SCR mencapai keadaan ON maka selamanya akan ON, walaupun tegangan gate dilepas atau di short ke katoda. Satu-satunya cara untuk membuat SCR menjadi OFF adalah dengan membuat arus anoda-katoda turun dibawah arus Ih (holding current). Pada gambar-5 kurva I-V SCR, jika arus forward berada dibawah titik Ih, maka SCR kembali pada keadaan OFF. Berapa besar arus holding ini, umumnya ada di dalam datasheet SCR. 
Cara membuat SCR menjadi OFF tersebut adalah sama saja dengan menurunkan tegangan anoda-katoda ke titik nol. Karena inilah SCR atau thyristor pada umumnya tidak cocok digunakan untuk aplikasi DC. Komponen ini lebih banyak digunakan untuk aplikasi-aplikasi tegangan AC, dimana SCR bisa OFF pada saat gelombang tegangan AC berada di titik nol.
Ada satu parameter penting lain dari SCR, yaitu VGT. Parameter ini adalah tegangan trigger pada gate yang menyebabkab SCR ON. Kalau dilihat dari model thyristor pada gambar-2, tegangan ini adalah tegangan Vbe pada transistor Q2. VGT seperti halnya Vbe, besarnya kira-kira 0.7 volt. Seperti contoh rangkaian gambar-8 berikut ini sebuah SCR diketahui memiliki IGT = 10 mA dan VGT = 0.7 volt. Maka dapat dihitung tegangan Vin yang diperlukan agar SCR ini ON adalah sebesar :
Vin = Vr + VGT
Vin = IGT(R) + VGT = 4.9 volt  
Gambar-8 : Rangkaian SCR
TRIAC
Boleh dikatakan SCR adalah thyristor yang uni-directional, karena ketika ON hanya bisa melewatkan arus satu arah saja yaitu dari anoda menuju katoda. Struktur TRIAC sebenarnya adalah sama dengan dua buah SCR yang arahnya bolak-balik dan kedua gate-nya disatukan. Simbol TRIAC ditunjukkan pada gambar-6. TRIAC biasa juga disebut thyristor bi-directional.
Gambar-6 : Simbol TRIAC
TRIAC bekerja mirip seperti SCR yang paralel bolak-balik, sehingga dapat melewatkan arus dua arah. Kurva karakteristik dari TRIAC adalah seperti pada gambar-7 berikut ini.
Gambar-7 : Karakteristik kurva I-V TRIAC
Pada datasheet akan lebih detail diberikan besar parameter-parameter seperti  Vbo dan -Vbo, lalu IGT dan -IGT, Ih serta -Ih dan sebagainya. Umumnya besar parameter ini simetris antara yang plus dan yang minus. Dalam perhitungan desain, bisa dianggap parameter ini simetris sehingga lebih mudah di hitung.
DIAC
Kalau dilihat strukturnya seperti gambar-8a, DIAC bukanlah termasuk keluarga thyristor, namun prisip kerjanya membuat ia digolongkan sebagai thyristor. DIAC dibuat dengan struktur PNP mirip seperti transistor. Lapisan N pada transistor dibuat sangat tipis sehingga elektron dengan mudah dapat menyeberang menembus lapisan ini. Sedangkan pada DIAC, lapisan N di buat cukup tebal sehingga elektron cukup sukar untuk menembusnya. Struktur DIAC yang demikian dapat juga dipandang sebagai dua buah dioda PN dan NP, sehingga dalam beberapa literatur DIAC digolongkan sebagai dioda.
Gambar-8 : Struktur dan simbol DIAC
Sukar dilewati oleh arus dua arah, DIAC memang dimaksudkan untuk tujuan ini. Hanya dengan tegangan breakdown tertentu barulah DIAC dapat menghantarkan arus. Arus yang dihantarkan tentu saja bisa bolak-balik dari anoda menuju katoda dan sebaliknya. Kurva karakteristik DIAC sama seperti TRIAC, tetapi yang hanya perlu diketahui adalah berapa tegangan breakdown-nya. 
Simbol dari DIAC adalah seperti yang ditunjukkan pada gambar-8b. DIAC umumnya dipakai sebagai pemicu TRIAC agar ON pada tegangan input tertentu yang relatif tinggi. Contohnya adalah aplikasi dimmer lampu yang berikut pada gambar-9.
Gambar 9 : Rangkaian Dimmer
Jika diketahui IGT dari TRIAC pada rangkaian di atas 10 mA dan VGT = 0.7 volt. Lalu diketahui juga yang digunakan adalah sebuah DIAC dengan Vbo = 20 V, maka dapat dihitung TRIAC akan ON pada tegangan :
V = IGT(R)+Vbo+VGT = 120.7 V
Gambar-10 : Sinyal keluaran TRIAC
Pada rangkaian dimmer, resistor R biasanya diganti dengan rangkaian seri resistor dan potensiometer. Di sini kapasitor C bersama rangkaian R digunakan untuk menggeser phasa tegangan VAC. Lampu dapat diatur menyala redup dan terang, tergantung pada saat kapan TRIAC di picu.

Macam macam TRANSISTOR

Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.

Transistor through-hole (dibandingkan dengan pita ukur sentimeter)
Pada umumnya, transistor memiliki 3 terminal, yaitu Basis (B), Emitor (E) dan Kolektot (C). Tegangan yang di satu terminalnya misalnya Emitor dapat dipakai untuk mengatur arus dan tegangan yang lebih besar daripada arus input Basis, yaitu pada keluaran tegangan dan arus output Kolektor.
Transistor merupakan komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil (stabilisator) dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori dan fungsi rangkaian-rangkaian lainnya.

Cara kerja semikonduktor

Pada dasarnya, transistor dan tabung vakum memiliki fungsi yang serupa; keduanya mengatur jumlah aliran arus listrik.
Untuk mengerti cara kerja semikonduktor, misalkan sebuah gelas berisi air murni. Jika sepasang konduktor dimasukan kedalamnya, dan diberikan tegangan DC tepat dibawah tegangan elektrolisis (sebelum air berubah menjadi Hidrogen dan Oksigen), tidak akan ada arus mengalir karena air tidak memiliki pembawa muatan (charge carriers). Sehingga, air murni dianggap sebagai isolator. Jika sedikit garam dapur dimasukan ke dalamnya, konduksi arus akan mulai mengalir, karena sejumlah pembawa muatan bebas (mobile carriers, ion) terbentuk. Menaikan konsentrasi garam akan meningkatkan konduksi, namun tidak banyak. Garam dapur sendiri adalah non-konduktor (isolator), karena pembawa muatanya tidak bebas.
Silikon murni sendiri adalah sebuah isolator, namun jika sedikit pencemar ditambahkan, seperti Arsenik, dengan sebuah proses yang dinamakan doping, dalam jumlah yang cukup kecil sehingga tidak mengacaukan tata letak kristal silikon, Arsenik akan memberikan elektron bebas dan hasilnya memungkinkan terjadinya konduksi arus listrik. Ini karena Arsenik memiliki 5 atom di orbit terluarnya, sedangkan Silikon hanya 4. Konduksi terjadi karena pembawa muatan bebas telah ditambahkan (oleh kelebihan elektron dari Arsenik). Dalam kasus ini, sebuah Silikon tipe-n (n untuk negatif, karena pembawa muatannya adalah elektron yang bermuatan negatif) telah terbentuk.
Selain dari itu, silikon dapat dicampur dengan Boron untuk membuat semikonduktor tipe-p. Karena Boron hanya memiliki 3 elektron di orbit paling luarnya, pembawa muatan yang baru, dinamakan "lubang" (hole, pembawa muatan positif), akan terbentuk di dalam tata letak kristal silikon.
Dalam tabung hampa, pembawa muatan (elektron) akan dipancarkan oleh emisi thermionic dari sebuah katode yang dipanaskan oleh kawat filamen. Karena itu, tabung hampa tidak bisa membuat pembawa muatan positif (hole).
Dapat disimak bahwa pembawa muatan yang bermuatan sama akan saling tolak menolak, sehingga tanpa adanya gaya yang lain, pembawa-pembawa muatan ini akan terdistribusi secara merata di dalam materi semikonduktor. Namun di dalam sebuah transistor bipolar (atau diode junction) dimana sebuah semikonduktor tipe-p dan sebuah semikonduktor tipe-n dibuat dalam satu keping silikon, pembawa-pembawa muatan ini cenderung berpindah ke arah sambungan P-N tersebut (perbatasan antara semikonduktor tipe-p dan tipe-n), karena tertarik oleh muatan yang berlawanan dari seberangnya.
Kenaikan dari jumlah pencemar (doping level) akan meningkatkan konduktivitas dari materi semikonduktor, asalkan tata-letak kristal silikon tetap dipertahankan. Dalam sebuah transistor bipolar, daerah terminal emiter memiliki jumlah doping yang lebih besar dibandingkan dengan terminal basis. Rasio perbandingan antara doping emiter dan basis adalah satu dari banyak faktor yang menentukan sifat penguatan arus (current gain) dari transistor tersebut.
Jumlah doping yang diperlukan sebuah semikonduktor adalah sangat kecil, dalam ukuran satu berbanding seratus juta, dan ini menjadi kunci dalam keberhasilan semikonduktor. Dalam sebuah metal, populasi pembawa muatan adalah sangat tinggi; satu pembawa muatan untuk setiap atom. Dalam metal, untuk mengubah metal menjadi isolator, pembawa muatan harus disapu dengan memasang suatu beda tegangan. Dalam metal, tegangan ini sangat tinggi, jauh lebih tinggi dari yang mampu menghancurkannya. Namun, dalam sebuah semikonduktor hanya ada satu pembawa muatan dalam beberapa juta atom. Jumlah tegangan yang diperlukan untuk menyapu pembawa muatan dalam sejumlah besar semikonduktor dapat dicapai dengan mudah. Dengan kata lain, listrik di dalam metal adalah inkompresible (tidak bisa dimampatkan), seperti fluida. Sedangkan dalam semikonduktor, listrik bersifat seperti gas yang bisa dimampatkan. Semikonduktor dengan doping dapat diubah menjadi isolator, sedangkan metal tidak.
Gambaran di atas menjelaskan konduksi disebabkan oleh pembawa muatan, yaitu elektron atau lubang, namun dasarnya transistor bipolar adalah aksi kegiatan dari pembawa muatan tersebut untuk menyebrangi daerah depletion zone. Depletion zone ini terbentuk karena transistor tersebut diberikan tegangan bias terbalik, oleh tegangan yang diberikan di antara basis dan emiter. Walau transistor terlihat seperti dibentuk oleh dua diode yang disambungkan, sebuah transistor sendiri tidak bisa dibuat dengan menyambungkan dua diode. Untuk membuat transistor, bagian-bagiannya harus dibuat dari sepotong kristal silikon, dengan sebuah daerah basis yang sangat tipis.

Cara kerja transistor

Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe dasar transistor, bipolar junction transistor (BJT atau transistor bipolar) dan field-effect transistor (FET), yang masing-masing bekerja secara berbeda.
Transistor bipolar dinamakan demikian karena kanal konduksi utamanya menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu daerah/lapisan pembatas dinamakan depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.
FET (juga dinamakan transistor unipolar) hanya menggunakan satu jenis pembawa muatan (elektron atau hole, tergantung dari tipe FET). Dalam FET, arus listrik utama mengalir dalam satu kanal konduksi sempit dengan depletion zone di kedua sisinya (dibandingkan dengan transistor bipolar dimana daerah Basis memotong arah arus listrik utama). Dan ketebalan dari daerah perbatasan ini dapat diubah dengan perubahan tegangan yang diberikan, untuk mengubah ketebalan kanal konduksi tersebut. Lihat artikel untuk masing-masing tipe untuk penjelasan yang lebih lanjut.

Jenis-jenis transistor

BJT symbol PNP.svg PNP JFET symbol P.png P-channel
BJT symbol NPN.svg NPN JFET symbol N.png N-channel
BJT
JFET
Simbol Transistor dari Berbagai Tipe
Secara umum, transistor dapat dibeda-bedakan berdasarkan banyak kategori:
  • Materi semikonduktor: Germanium, Silikon, Gallium Arsenide
  • Kemasan fisik: Through Hole Metal, Through Hole Plastic, Surface Mount, IC, dan lain-lain
  • Tipe: UJT, BJT, JFET, IGFET (MOSFET), IGBT, HBT, MISFET, VMOSFET, MESFET, HEMT, SCR serta pengembangan dari transistor yaitu IC (Integrated Circuit) dan lain-lain.
  • Polaritas: NPN atau N-channel, PNP atau P-channel
  • Maximum kapasitas daya: Low Power, Medium Power, High Power
  • Maximum frekwensi kerja: Low, Medium, atau High Frequency, RF transistor, Microwave, dan lain-lain
  • Aplikasi: Amplifier, Saklar, General Purpose, Audio, Tegangan Tinggi, dan lain-lain

BJT

BJT (Bipolar Junction Transistor) adalah salah satu dari dua jenis transistor. Cara kerja BJT dapat dibayangkan sebagai dua dioda yang terminal positif atau negatifnya berdempet, sehingga ada tiga terminal. Ketiga terminal tersebut adalah emiter (E), kolektor (C), dan basis (B).
Perubahan arus listrik dalam jumlah kecil pada terminal basis dapat menghasilkan perubahan arus listrik dalam jumlah besar pada terminal kolektor. Prinsip inilah yang mendasari penggunaan transistor sebagai penguat elektronik. Rasio antara arus pada koletor dengan arus pada basis biasanya dilambangkan dengan β atau hFE. β biasanya berkisar sekitar 100 untuk transistor-transisor BJT.

FET

FET dibagi menjadi dua keluarga: Junction FET (JFET) dan Insulated Gate FET (IGFET) atau juga dikenal sebagai Metal Oxide Silicon (atau Semiconductor) FET (MOSFET). Berbeda dengan IGFET, terminal gate dalam JFET membentuk sebuah dioda dengan kanal (materi semikonduktor antara Source dan Drain). Secara fungsinya, ini membuat N-channel JFET menjadi sebuah versi solid-state dari tabung vakum, yang juga membentuk sebuah dioda antara grid dan katode. Dan juga, keduanya (JFET dan tabung vakum) bekerja di "depletion mode", keduanya memiliki impedansi input tinggi, dan keduanya menghantarkan arus listrik dibawah kontrol tegangan input.
FET lebih jauh lagi dibagi menjadi tipe enhancement mode dan depletion mode. Mode menandakan polaritas dari tegangan gate dibandingkan dengan source saat FET menghantarkan listrik. Jika kita ambil N-channel FET sebagai contoh: dalam depletion mode, gate adalah negatif dibandingkan dengan source, sedangkan dalam enhancement mode, gate adalah positif. Untuk kedua mode, jika tegangan gate dibuat lebih positif, aliran arus di antara source dan drain akan meningkat. Untuk P-channel FET, polaritas-polaritas semua dibalik. Sebagian besar IGFET adalah tipe enhancement mode, dan hampir semua JFET adalah tipe depletion mode.

sumber : http://id.wikipedia.org/wiki/Transistor

Macam macam SEMI KONDUKTOR

Semikonduktor adalah sebuah bahan dengan konduktivitas listrik yang berada di antara insulator dan konduktor. Semikonduktor disebut juga sebagai bahan setengah penghantar listrik. Sebuah semikonduktor bersifat sebagai insulator pada temperatur yang sangat rendah, namun pada temperatur ruangan besifat sebagai konduktor. Bahan semikonduksi yang sering digunakan adalah silikon, germanium, dan gallium arsenide.
Semikonduktor sangat berguna dalam bidang elektronik, karena konduktansinya yang dapat diubah-ubah dengan menyuntikkan materi lain (biasa disebut pendonor elektron).
Untuk informasi bagaimana semikonduktor digunakan sebagai alat elektronik, lihat alat semikonduktor.

Doping Semikonduktor

Distribusi Fermi-Dirac sebagai dasar struktur pita dalam semikonduktor
Salah satu alasan utama kegunaan semikonduktor dalam elektronik adalah sifat elektroniknya dapat diubah banyak dalam sebuah cara terkontrol dengan menambah sejumlah kecil ketidakmurnian. Ketidakmurnian ini disebut dopan.
Doping sejumlah besar ke semikonduktor dapat meningkatkan konduktivitasnya dengan faktor lebih besar dari satu milyar.[rujukan?] Dalam sirkuit terpadu modern, misalnya, polycrystalline silicon didop-berat seringkali digunakan sebagai pengganti logam.

Persiapan bahan semikonduktor

Semikonduktor dengan properti elektronik yang dapat diprediksi dan handal diperlukan untuk produksi massa. Tingkat kemurnian kimia yang diperlukan sangat tinggi karena adanya ketidaksempurnaan, bahkan dalam proporsi sangat kecil dapat memiliki efek besar pada properti dari material. Kristal dengan tingkat kesempurnaan yang tinggi juga diperlukan, karena kesalahan dalam struktur kristal (seperti dislokasi, kembaran, dan retak tumpukan) mengganggu properti semikonduktivitas dari material. Retakan kristal merupakan penyebab utama rusaknya perangkat semikonduktor. Semakin besar kristal, semakin sulit mencapai kesempurnaan yang diperlukan. Proses produksi massa saat ini menggunakan ingot (bahan dasar) kristal dengan diameter antara empat hingga dua belas inci (300 mm) yang ditumbuhkan sebagai silinder kemudian diiris menjadi wafer.
Karena diperlukannya tingkat kemurnian kimia dan kesempurnaan struktur kristal untuk membuat perangkat semikonduktor, metode khusus telah dikembangkan untuk memproduksi bahan semikonduktor awal. Sebuah teknik untuk mencapai kemurnian tinggi termasuk pertumbuhan kristal menggunakan proses Czochralski. Langkah tambahan yang dapat digunakan untuk lebih meningkatkan kemurnian dikenal sebagai perbaikan zona. Dalam perbaikan zona, sebagian dari kristal padat dicairkan. Impuritas cenderung berkonsentrasi di daerah yang dicairkan, sedangkan material yang diinginkan mengkristal kembali sehingga menghasilkan bahan lebih murni dan kristal dengan lebih sedikit kesalahan.
Dalam pembuatan perangkat semikonduktor yang melibatkan heterojunction antara bahan-bahan semikonduktor yang berbeda, konstanta kisi, yaitu panjang dari struktur kristal yang berulang, penting untuk menentukan kompatibilitas antar bahan.

sumber : http://id.wikipedia.org/wiki/Semikonduktor

Macam macam INDUKTOR

Masih ingat aturan tangan kanan pada pelajaran fisika ? Ini cara yang efektif untuk mengetahui arah medan listrik terhadap arus listrik. Jika seutas kawat tembaga diberi aliran listrik, maka di sekeliling kawat tembaga akan terbentuk medan listrik. Dengan aturan tangan kanan dapat diketahui arah medan listrik terhadap arah arus listrik. Caranya sederhana yaitu dengan mengacungkan jari jempol tangan kanan sedangkan keempat jari lain menggenggam. Arah jempol adalah arah arus dan arah ke empat jari lain adalah arah medan listrik yang mengitarinya.aturan tangan kanan medan induksi Gambar-1 : Aturan tangan kanan medan induksi
Tentu masih ingat juga percobaan dua utas kawat tembaga paralel yang keduanya diberi arus listrik. Jika arah arusnya berlawanan, kedua kawat tembaga tersebut saling menjauh. Tetapi jika arah arusnya sama ternyata keduanya berdekatan saling tarik-menarik. Hal ini terjadi karena adanya induksi medan listrik. Dikenal medan listrik dengan simbol B dan satuannya Tesla (T). Besar akumulasi medan listrik B pada suatu luas area A tertentu difenisikan sebagai besar magnetic flux. Simbol yang biasa digunakan untuk menunjukkan besar magnetic flux ini adalah F dan satuannya Weber (Wb = T.m2). Secara matematis besarnya adalah :
medan flux medan flux...(1)
Lalu bagaimana jika kawat tembaga itu dililitkan membentuk koil atau kumparan. Jika kumparan tersebut dialiri listrik maka tiap lilitan akan saling menginduksi satu dengan yang lainnya. Medan listrik yang terbentuk akan segaris dan saling menguatkan. Komponen yang seperti inilah yang dikenal dengan induktor selenoid.
Dari buku fisika dan teori medan yang menjelimet, dibuktikan bahwa induktor adalah komponen yang dapat menyimpan energi magnetik. Energi ini direpresentasikan dengan adanya tegangan emf (electromotive force) jika induktor dialiri listrik. Secara matematis tegangan emf ditulis :
tegangan emf
tegangan emf .... (2)
Jika dibandingkan dengan rumus hukum Ohm V=RI, maka kelihatan ada kesamaan rumus. Jika R disebut resistansi dari resistor dan V adalah besar tegangan jepit jika resistor dialiri listrik sebesar I. Maka L adalah induktansi dari induktor dan E adalah tegangan yang timbul jika induktor dilairi listrik. Tegangan emf di sini adalah respon terhadap perubahan arus fungsi dari waktu terlihat dari rumus di/dt. Sedangkan bilangan negatif sesuai dengan hukum Lenz  yang mengatakan efek induksi cenderung melawan perubahan yang menyebabkannya.  
Hubungan antara emf dan arus inilah yang disebut dengan induktansi, dan satuan yang digunakan adalah (H) Henry.
Induktor disebut self-induced
Arus listrik yang melewati kabel, jalur-jalur pcb dalam suatu rangkain berpotensi untuk menghasilkan medan induksi. Ini yang sering menjadi pertimbangan dalam mendesain   pcb supaya bebas dari efek induktansi terutama jika multilayer. Tegangan emf akan menjadi penting saat perubahan arusnya fluktuatif. Efek emf menjadi signifikan pada sebuah induktor, karena perubahan arus yang melewati tiap lilitan akan saling menginduksi. Ini yang dimaksud dengan self-induced. Secara matematis induktansi pada suatu induktor dengan jumlah lilitan sebanyak N adalah akumulasi flux magnet untuk tiap arus yang melewatinya :

induktansi L
induktansi ...... (3)
gambar induktor
Gambar-2 : Induktor selenoida
Fungsi utama dari induktor di dalam suatu rangkaian adalah untuk melawan fluktuasi arus yang melewatinya. Aplikasinya pada rangkaian dc salah satunya adalah untuk menghasilkan tegangan dc yang konstan terhadap fluktuasi beban arus. Pada aplikasi rangkaian ac, salah satu gunanya adalah bisa untuk meredam perubahan fluktuasi arus yang tidak dinginkan. Akan lebih banyak lagi fungsi dari induktor yang bisa diaplikasikan pada rangkaian filter, tuner dan sebagainya.
Dari pemahaman fisika, elektron yang bergerak akan menimbulkan medan elektrik di sekitarnya. Berbagai bentuk kumparan, persegi empat, setegah lingkaran ataupun lingkaran penuh, jika dialiri listrik akan menghasilkan medan listrik yang berbeda. Penampang induktor biasanya berbentuk lingkaran, sehingga diketahui besar medan listrik di titik tengah lingkaran adalah :
medan listrik
Medan listrik ........ (4)
Jika dikembangkan, n adalah jumlah lilitan N relatif terhadap panjang induktor l. Secara matematis ditulis :
rumus lilitan induktor
Lilitan per-meter……….(5)
Lalu i adalah besar arus melewati induktor tersebut. Ada simbol m yang dinamakan permeability dan mo yang disebut permeability udara vakum. Besar permeability m tergantung dari bahan inti (core) dari induktor. Untuk induktor tanpa inti (air winding) m = 1.
Jika rumus-rumus di atas di subsitusikan maka rumus induktansi (rumus 3) dapat ditulis menjadi :
Induktansi Induktor
Induktansi Induktor ..... (6) 
Induktor selenoida dengan inti
Gambar-3 : Induktor selenoida dengan inti (core)

L  : induktansi dalam H (Henry)
m  : permeability inti (core) 
mo : permeability udara vakum
mo = 4p x 10-7
N  : jumlah lilitan induktor
A  : luas penampang induktor (m2)
l  : panjang induktor (m)
Inilah rumus untuk menghitung nilai induktansi dari sebuah induktor. Tentu saja rumus ini bisa dibolak-balik untuk menghitung jumlah lilitan induktor jika nilai induktansinya sudah ditentukan.  
Toroid
Ada satu jenis induktor yang kenal dengan nama toroid. Jika biasanya induktor berbentuk silinder memanjang, maka toroid berbentuk lingkaran. Biasanya selalu menggunakan inti besi (core) yang juga berbentuk lingkaran seperti kue donat.  
Induktor toroida
Gambar-4 : Induktor Toroida 
Jika jari-jari toroid adalah r, yaitu jari-jari lingkar luar dikurang jari-jari lingkar dalam. Maka panjang induktor efektif adalah kira-kira :
keliling lingkaran toroida
Keliling lingkaran toroida …... (7)
Dengan demikian untuk toroida besar induktansi L adalah :
Induktansi toroida
Induktansi Toroida  ………(8)  
Salah satu keuntungan induktor berbentuk toroid, dapat induktor dengan induktansi yang lebih besar dan dimensi yang relatif lebih kecil dibandingkan dengan induktor berbentuk silinder. Juga karena toroid umumnya menggunakan inti (core) yang melingkar, maka medan induksinya tertutup dan relatif tidak menginduksi komponen lain yang berdekatan di dalam satu pcb.
Ferit dan Permeability
Besi lunak banyak digunakan sebagai inti (core) dari induktor yang disebut ferit.  Ada bermacam-macam bahan ferit yang disebut ferromagnetik.  Bahan dasarnya adalah bubuk besi oksida yang disebut juga iron powder. Ada juga ferit yang dicampur dengan bahan bubuk lain seperti nickle, manganase, zinc (seng) dan mangnesium. Melalui proses yang dinamakan kalsinasi yaitu dengan pemanasan tinggi dan tekanan tinggi, bubuk campuran tersebut dibuat menjadi komposisi yang padat. Proses pembuatannya sama seperti membuat keramik. Oleh sebab itu ferit ini sebenarnya adalah keramik.
Ferit yang sering dijumpai ada yang memiliki m = 1  sampai m = 15.000.  Dapat dipahami penggunaan ferit dimaksudkan untuk mendapatkan nilai induktansi yang lebih besar relatif terhadap jumlah lilitan yang lebih sedikit serta dimensi induktor yang lebih kecil.
Penggunaan ferit juga disesuaikan dengan frekeunsi kerjanya. Karena beberapa ferit akan optimum jika bekerja pada selang frekuensi tertentu. Berikut ini adalah beberapa contoh bahan ferit yang dipasar dikenal dengan kode nomer materialnya. Pabrik pembuat biasanya dapat memberikan data kode material, dimensi dan permeability yang lebih detail. 
Tabel-1 : Data Material Ferit
tabel data material ferit Sampai di sini kita sudah dapat menghitung nilai induktansi suatu induktor. Misalnya induktor dengan jumlah lilitan 20, berdiameter 1 cm dengan panjang 2 cm serta mengunakan inti ferit dengan m = 3000. Dapat diketahui nilai induktansinya adalah :
L =  5.9 mH (aproksimasi)
Selain ferit yang berbentuk silinder ada juga ferit yang berbentuk toroida. Umumnya dipasar tersedia berbagai macam jenis dan ukuran toroida. Jika datanya lengkap, maka kita dapat menghitung nilai induktansi dengan menggunakan rumus-rumus yang ada. Karena perlu diketahui nilai permeability bahan ferit, diameter lingkar luar, diameter lingkar dalam serta luas penampang toroida. Tetapi biasanya pabrikan hanya membuat daftar indeks induktansi (inductance index) AL. Indeks ini dihitung berdasarkan dimensi dan permeability ferit. Dengan data ini dapat dihitung jumlah lilitan yang diperlukan untuk mendapatkan nilai induktansi tertentu. Seperti contoh tabel AL berikut ini yang satuannya mH/100 lilitan.      
Tabel-2 : Contoh Tabel AL
Tabel AL Rumus untuk menghitung jumlah lilitan yang diperlukan untuk mendapatkan nilai induktansi yang diinginkan adalah :
indeks AL
Indeks AL ………. (9)
Misalnya digunakan ferit toroida T50-1, maka dari table diketahui nilai AL = 100. Maka untuk mendapatkan induktor sebesar 4mH diperlukan lilitan sebanyak :
N = 20 lilitan (aproksimasi)
Rumus ini sebenarnya diperoleh dari rumus dasar perhitungan induktansi dimana induktansi L berbanding lurus dengan kuadrat jumlah lilitan N2. Indeks AL umumnya sudah baku dibuat oleh pabrikan sesuai dengan dimensi dan permeability bahan feritnya.  
Permeability bahan bisa juga diketahui dengan kode warna tertentu. Misalnya abu-abu, hitam, merah, biru atau kuning. Sebenarnya lapisan ini bukan hanya sekedar warna yang membedakan permeability, tetapi berfungsi juga sebagai pelapis atau  isolator. Biasanya pabrikan menjelaskan berapa nilai tegangan kerja untuk toroida tersebut. 
Contoh bahan ferit toroida di atas umumnya memiliki premeability yang kecil. Karena bahan ferit yang demikian terbuat hanya dari bubuk besi (iron power). Banyak juga ferit toroid dibuat dengan nilai permeability m yang besar. Bahan ferit tipe ini terbuat dari campuran bubuk besi dengan bubuk logam lain. Misalnya ferit toroida FT50-77 memiliki indeks AL = 1100.
Kawat tembaga
Untuk membuat induktor biasanya tidak diperlukan kawat tembaga yang sangat panjang. Paling yang diperlukan hanya puluhan sentimeter saja, sehingga efek resistansi bahan kawat tembaga dapat diabaikan. Ada banyak kawat tembaga yang bisa digunakan. Untuk pemakaian yang profesional di pasar dapat dijumpai kawat tembaga dengan standar AWG (American Wire Gauge). Standar ini tergantung dari diameter kawat, resistansi dan sebagainya. Misalnya kawat tembaga AWG32 berdiameter kira-kira 0.3mm, AWG22 berdiameter 0.7mm ataupun AWG20 yang berdiameter kira-kira 0.8mm. Biasanya yang digunakan adalah kawat tembaga tunggal dan memiliki isolasi.
Penutup
Sayangnya untuk pengguna amatir, data yang diperlukan tidak banyak tersedia di toko eceran. Sehingga terkadang dalam membuat induktor jumlah lilitan yang semestinya berbeda dengan hasil perhitungan teoritis. Kawat tembaga yang digunakan bisa berdiameter berapa saja, yang pasti harus lebih kecil dibandingkan diameter penampang induktor.  Terkadang pada prakteknya untuk membuat induktor sendiri harus coba-coba dan toleransi induktansinya cukup besar. Untuk mendapatkan nilai induktansi yang akurat ada efek kapasitif dan resistif yang harus diperhitungkan. Karena ternyata arus yang melewati kawat tembaga hanya dipermukaan saja. Ini yang dikenal dengan istilah ekef kulit (skin effect). Ada satu tip untuk membuat induktor yang baik, terutama induktor berbentuk silinder. Untuk memperoleh nilai “Q” yang optimal panjang induktor sebaiknya tidak lebih dari 2x diameter penampangnya. Untuk toroid usahakan lilitannya merata dan rapat.
::wassalam

pengertian DIODA

Secara umum semua diode memiliki konstruksi dan prinsip kerja yang sama. Macam-macam diode pada dasarnya terbentuk oleh sambungan PN yang secara fisik diode dikenali melalui nama elektrodenya yang khas yaitu : anode dan katode. Diode dibedakan menurut fungsinya, disini dalam refresentasi simbolik dilukiskan secara berbeda demikian pula karakteristiknya.
Rectifier Diode :  berfungsi sebagai penyearah
Rectifier Diode
Rectifier Diode
Zener Diode : berfungsi sebagai regulator
Zener Diode
Zener Diode
LED : berfungsi sebagai indikator dan display
LED Diode
LED Diode
Foto Diode : berfungsi sebagai sensor cahaya
Foto Diode
Foto Diode
Schothly Diode : berfungsi sebagai saklar kecepatan tinggi
Schothly Diode
Schothly Diode
Tunnel Diode : berfungsi sebagai osilator
Tunnel Diode
Tunnel Diode
Varaktor Diode : berfungsi sebagai pengganti variable kapasitor
Varaktor Diode

pengertian DIODA

Secara umum semua diode memiliki konstruksi dan prinsip kerja yang sama. Macam-macam diode pada dasarnya terbentuk oleh sambungan PN yang secara fisik diode dikenali melalui nama elektrodenya yang khas yaitu : anode dan katode. Diode dibedakan menurut fungsinya, disini dalam refresentasi simbolik dilukiskan secara berbeda demikian pula karakteristiknya.
Rectifier Diode :  berfungsi sebagai penyearah
Rectifier Diode
Rectifier Diode
Zener Diode : berfungsi sebagai regulator
Zener Diode
Zener Diode
LED : berfungsi sebagai indikator dan display
LED Diode
LED Diode
Foto Diode : berfungsi sebagai sensor cahaya
Foto Diode
Foto Diode
Schothly Diode : berfungsi sebagai saklar kecepatan tinggi
Schothly Diode
Schothly Diode
Tunnel Diode : berfungsi sebagai osilator
Tunnel Diode
Tunnel Diode
Varaktor Diode : berfungsi sebagai pengganti variable kapasitor
Varaktor Diode